文章507
标签266
分类65

从零开始搭建大数据镜像-1

一直想要有那种开箱即用的大数据Docker镜像,但是找了很久感觉使用体验都不好;

最近又搞起了大数据,感觉还是自己搞一个大数据的镜像组集群比较好;

软件来源:

Github地址:

DockerHub镜像:

系列文章:


前言

本系列会从最开始构建Hadoop开始,逐步添加大数据组件,来构建一个大数据集群;

整个集群共分为三个节点(后面可能会根据情况增加);

本篇作为最开始,先来构建了三节点的Hadoop集群;

最基础的镜像使用的是:

  • centos:centos7.9.2009

软件压缩包存放在:

  • /opt/software

软件放在:

  • /opt/module

工具放在:

  • /root/bin

废话不多说,直接开始吧!


网络规划

保证大数据中各个节点的网络互通是非常重要的!

因此我们首先来创建一个专属于这个大数据集群的子网:

# 大数据子网
docker network create --subnet 172.30.0.0/24 --gateway 172.30.0.1 big-data

我们选择了172.30.0.0/24作为子网,172.30.0.1为对应网关;

对于不同节点规划如下:

节点 IP 说明
big-data-model 172.30.0.10 大数据基础镜像
big-data-1 172.30.0.11 节点1
big-data-2 172.30.0.12 节点2
big-data-3 172.30.0.13 节点3

下面构建基础镜像;


构建基础镜像

使用下面的命令创建基础镜像容器:

# 最基础镜像
docker run -itd --name big-data-model --net big-data --ip 172.30.0.10  --hostname big-data-model --privileged  centos:centos7.9.2009 /usr/sbin/init

docker exec -it big-data-model /bin/bash

注:--privileged/usr/sbin/init是必须的,否则会存在容器权限不足的问题!

进入镜像后执行:

# 更新软件源
yum install -y epel-release
yum update -y

# 安装和配置SSH
yum install -y openssh-server
systemctl start sshd
systemctl enable sshd

## 增加配置内容
vi /etc/ssh/sshd_config
UseDNS no
PermitRootLogin yes #允许root登录
PermitEmptyPasswords no #不允许空密码登录
PasswordAuthentication yes # 设置是否使用口令验证

systemctl restart sshd

# 安装SSH客户端
yum -y install openssh-clients

# 安装Vim
yum install -y vim

# 安装网络工具
yum install -y net-tools

# 修改hosts,增加节点内容
vi /etc/hosts
172.30.0.11     big-data-1
172.30.0.12     big-data-2
172.30.0.13     big-data-3

上面的内容执行完后,执行docker commit将容器保存为镜像:

docker commit --message "基本镜像:添加ssh、net-tools等工具"  big-data-model jasonkay/big-data-model:v0.1

# 向DockerHub推送镜像(可选)
docker push jasonkay/big-data-model:v0.1

下面测试基础镜像:

# 基础镜像测试
docker run -itd --name big-data-1 --net big-data --ip 172.30.0.11  --hostname big-data-1 --privileged  jasonkay/big-data-model:v0.1 /usr/sbin/init
docker run -itd --name big-data-2 --net big-data --ip 172.30.0.12  --hostname big-data-2 --privileged  jasonkay/big-data-model:v0.1 /usr/sbin/init
docker run -itd --name big-data-3 --net big-data --ip 172.30.0.13  --hostname big-data-3 --privileged  jasonkay/big-data-model:v0.1 /usr/sbin/init

使用基础镜像创建三个大数据容器:

  • big-data-1
  • big-data-2
  • big-data-3

进入容器1:

docker exec -it big-data-1 /bin/bash

Ping其他容器:

[root@big-data-1 software]# ping big-data-2
PING big-data-2 (172.30.0.12) 56(84) bytes of data.
64 bytes from big-data-2.big-data (172.30.0.12): icmp_seq=1 ttl=64 time=0.054 ms
64 bytes from big-data-2.big-data (172.30.0.12): icmp_seq=2 ttl=64 time=0.056 ms
64 bytes from big-data-2.big-data (172.30.0.12): icmp_seq=3 ttl=64 time=0.063 ms
^C
--- big-data-2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 0.054/0.057/0.063/0.009 ms
[root@big-data-1 software]# ping big-data-3
PING big-data-3 (172.30.0.13) 56(84) bytes of data.
64 bytes from big-data-3.big-data (172.30.0.13): icmp_seq=1 ttl=64 time=0.067 ms
64 bytes from big-data-3.big-data (172.30.0.13): icmp_seq=2 ttl=64 time=0.091 ms
64 bytes from big-data-3.big-data (172.30.0.13): icmp_seq=3 ttl=64 time=0.063 ms
^C
--- big-data-3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.063/0.073/0.091/0.015 ms

网络畅通!


安装和配置软件及脚本

配置SSH

每个容器执行,生成SSH Key:

ssh-keygen -t rsa

将各个容器SSH公钥放在其他容器中:

cat ~/.ssh/id_rsa.pub >> authorized_keys

测试:

[root@big-data-1 software]# ssh big-data-2
Last login: Wed Aug 18 06:48:24 2021
[root@big-data-2 ~]# exit
logout
Connection to big-data-2 closed.
[root@big-data-1 software]# ssh big-data-3
Last login: Wed Aug 18 01:41:21 2021 from 172.30.0.10
[root@big-data-3 ~]# exit
logout
Connection to big-data-3 closed.

容器集群内同步文件脚本xsync

首先安装rsync:

yum install -y rsync

编辑创建xsync文件:

cd ~
mkdir bin
cd ~/bin
vim xsync

#!/bin/bash
# 1. check param num
if [ $# -lt 1 ]
then
  echo Not Enough Arguement!
  exit;
fi
# 2.traverse all mechine
for host in "big-data-1" "big-data-2" "big-data-3"
do
  echo ====================  $host  ====================
  # 3.traverse dir for each file
  for file in $@
  do
    # 4.check file exist
    if [ -e $file ]
    then
      # 5.get parent dor
      pdir=$(cd -P $(dirname $file); pwd)
      # 6.get file name
      fname=$(basename $file)
      ssh $host "mkdir -p $pdir"
      rsync -av $pdir/$fname $host:$pdir
    else
      echo $file does not exists!
    fi
  done
done

# 增加执行权限
chmod +x xsync

测试:

[root@big-data-1 bin]# xsync xsync 
==================== big-data-1 ====================
sending incremental file list

sent 38 bytes  received 12 bytes  100.00 bytes/sec
total size is 596  speedup is 11.92
==================== big-data-2 ====================
sending incremental file list

sent 38 bytes  received 12 bytes  100.00 bytes/sec
total size is 596  speedup is 11.92
==================== big-data-3 ====================
sending incremental file list

sent 38 bytes  received 12 bytes  100.00 bytes/sec
total size is 596  speedup is 11.92

成功!


JDK安装

各个容器内执行:

mkdir -p /opt/software
mkdir -p /opt/module

创建目录;

将宿主机中的JDK发送到容器中:

docker cp jdk-8u212-linux-x64.tar.gz big-data-1:/opt/software
docker cp jdk-8u212-linux-x64.tar.gz big-data-2:/opt/software
docker cp jdk-8u212-linux-x64.tar.gz big-data-3:/opt/software

各个容器内解压缩:

cd /opt/software
tar -zxvf jdk-8u212-linux-x64.tar.gz -C /opt/module/

# 配置环境变量
vim /etc/profile.d/my_env.sh

#JAVA_HOME
export JAVA_HOME=/opt/module/jdk1.8.0_212
export PATH=$PATH:$JAVA_HOME/bin

# 立即生效
source /etc/profile.d/my_env.sh
# 校验
java -version

创建模拟数据

各个容器内执行:

mkdir /opt/module/applog

宿主机将文件copy进容器中:

docker cp 日志.zip big-data-1:/opt/module/applog
docker cp 日志.zip big-data-2:/opt/module/applog
docker cp 日志.zip big-data-3:/opt/module/applog

各个容器内解压缩:

yum install -y unzip
cd  /opt/module/applog
unzip 日志.zip
rm -rf *.zip

各个容器内生成日志:

java -jar gmall2020-mock-log-2021-01-22.jar

① 配置集群日志生成脚本

配置环境变量:

  vim /etc/profile.d/my_env.sh
  export PATH=$PATH:$JAVA_HOME/bin:.:~/bin
  source /etc/profile.d/my_env.sh

创建生成脚本:

  vim ~/bin/lg.sh

  # 脚本内容
  #!/bin/bash
  for i in "big-data-1" "big-data-2" "big-data-3"; do
      echo "========== $i =========="
      ssh $i "cd /opt/module/applog/; java -jar gmall2020-mock-log-2021-01-22.jar >/dev/null 2>&1 &"
  done

  chmod u+x ~/bin/lg.sh

② 集群所有进程查看脚本

各个容器中:

  vim ~/bin/xcall.sh

  #! /bin/bash
  for i in "big-data-1" "big-data-2" "big-data-3"
  do
      echo --------- $i ----------
      ssh $i "$*"
  done

  chmod 777 ~/bin/xcall.sh

测试:

  [root@big-data-1 /]# ~/bin/xcall.sh jps
  --------- big-data-1 ----------
  204 Jps
  --------- big-data-2 ----------
  152 Jps
  --------- big-data-3 ----------
  155 Jps

Hadoop安装和配置

软件安装

宿主机传输文件到容器:

docker cp hadoop-3.1.3.tar.gz big-data-1:/opt/software
docker cp hadoop-3.1.3.tar.gz big-data-2:/opt/software
docker cp hadoop-3.1.3.tar.gz big-data-3:/opt/software

各容器解压缩并配置:

cd /opt/software
tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/

# 配置环境变量
vim /etc/profile.d/my_env.sh

# HADOOP_HOME
export HADOOP_HOME=/opt/module/hadoop-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

export HDFS_NAMENODE_USER="root"
export HDFS_DATANODE_USER="root"
export HDFS_SECONDARYNAMENODE_USER="root"
export YARN_RESOURCEMANAGER_USER="root"
export YARN_NODEMANAGER_USER="root"

# 立即生效
source /etc/profile.d/my_env.sh

Hadoop配置

进入Hadoop目录:

# big-data-1节点
cd $HADOOP_HOME/etc/hadoop

修改核心配置文件:

vim core-site.xml

<configuration>
<!-- 指定NameNode的地址 -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://big-data-1:8020</value>
    </property>
    <!-- 指定hadoop数据的存储目录 -->
        <property>
            <name>hadoop.tmp.dir</name>
            <value>/opt/module/hadoop-3.1.3/data</value>
    </property>
    <!-- 配置HDFS网页登录使用的静态用户为root -->
        <property>
            <name>hadoop.http.staticuser.user</name>
            <value>root</value>
    </property>
    <!-- 配置该root(superUser)允许通过代理访问的主机节点 -->
        <property>
            <name>hadoop.proxyuser.root.hosts</name>
            <value>*</value>
    </property>
    <!-- 配置该root(superUser)允许通过代理用户所属组 -->
        <property>
            <name>hadoop.proxyuser.root.groups</name>
            <value>*</value>
    </property>
    <!-- 配置该root(superUser)允许通过代理的用户-->
        <property>
            <name>hadoop.proxyuser.root.users</name>
            <value>*</value>
    </property>
</configuration>

HDFS配置文件:

vim hdfs-site.xml

<configuration>
<!-- nn web端访问地址-->
    <property>
        <name>dfs.namenode.http-address</name>
        <value>big-data-1:9870</value>
    </property>

<!-- 2nn web端访问地址-->
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>big-data-3:9868</value>
    </property>
<!-- 测试环境指定HDFS副本的数量1 -->
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>

YARN配置文件:

vim yarn-site.xml

<configuration>
<!-- 指定MR走shuffle -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!-- 指定ResourceManager的地址-->
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>big-data-2</value>
    </property>

    <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>

    <!-- yarn容器允许分配的最大最小内存 -->
    <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>512</value>
    </property>
    <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>4096</value>
    </property>

    <!-- yarn容器允许管理的物理内存大小 -->
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>4096</value>
    </property>

    <!-- 关闭yarn对虚拟内存的限制检查 -->
    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>
</configuration>

MapReduce配置文件:

vim mapred-site.xml

<configuration>
<!-- 指定MapReduce程序运行在Yarn上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

配置workers:

vim /opt/module/hadoop-3.1.3/etc/hadoop/workers

big-data-1
big-data-2
big-data-3

配置历史服务器:

vim mapred-site.xml

<!-- 历史服务器端地址 -->
<property>
    <name>mapreduce.jobhistory.address</name>
    <value>big-data-1:10020</value>
</property>

<!-- 历史服务器web端地址 -->
<property>
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>big-data-1:19888</value>
</property>

配置日志的聚集:

vim yarn-site.xml

<!-- 开启日志聚集功能 -->
<property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
</property>

<!-- 设置日志聚集服务器地址 -->
<property>  
    <name>yarn.log.server.url</name>  
    <value>http://big-data-1:19888/jobhistory/logs</value>
</property>

<!-- 设置日志保留时间为7天 -->
<property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>604800</value>
</property>

分发Hadoop:

# 在big-data-1执行
xsync /opt/module/hadoop-3.1.3/

启动Hadoop集群

如果集群是第一次启动,需要在big-data-1节点格式化NameNode(注意格式化之前,一定要先停止上次启动所有namenode和datanode进程,然后再删除data和log数据)!

格式化节点:

# 在big-data-1执行
cd $HADOOP_HOME
./bin/hdfs namenode -format

启动HDFS:

sbin/start-dfs.sh

在配置了ResourceManager的节点(big-data-2)启动YARN:

# 在big-data-2执行
sbin/start-yarn.sh

查看结果:

curl big-data-1:9870

# 返回类似于:<title>Hadoop Administration</title> 则成功;

或者:宿主机访问172.30.0.11:9870

注:如果你的宿主机是虚拟机或者其他服务器,可以在宿主机配置Nginx反向代理,进而在本机直接访问宿主机即可!

具体方法:

  # 宿主机编辑Nginx配置
  vi /etc/nginx/conf.d/hadoop_admin.conf

  server {
      listen 9870;
      server_name localhost;
      location / {
          proxy_pass http://172.30.0.11:9870;
      }
  }

添加映射即可;

然后本机访问:<宿主机IP>:9870

效果如下:

接下来我们配置Hadoop集群启动脚本;


配置Hadoop集群启动脚本

vim ~/bin/hdp.sh

#!/bin/bash
if [ $# -lt 1 ]
then
    echo "No Args Input..."
    exit ;
fi
case $1 in
"start")
        echo " =================== Start  Hadoop Cluster ==================="

        echo " --------------- Start hdfs ---------------"
        ssh big-data-1 "/opt/module/hadoop-3.1.3/sbin/start-dfs.sh"
        echo " --------------- Start yarn ---------------"
        ssh big-data-2 "/opt/module/hadoop-3.1.3/sbin/start-yarn.sh"
        echo " --------------- Start historyserver ---------------"
        ssh big-data-1 "/opt/module/hadoop-3.1.3/bin/mapred --daemon start historyserver"
;;
"stop")
        echo " =================== Close Hadoop Cluster ==================="

        echo " --------------- Close historyserver ---------------"
        ssh big-data-1 "/opt/module/hadoop-3.1.3/bin/mapred --daemon stop historyserver"
        echo " --------------- Close yarn ---------------"
        ssh big-data-2 "/opt/module/hadoop-3.1.3/sbin/stop-yarn.sh"
        echo " --------------- Close hdfs ---------------"
        ssh big-data-1 "/opt/module/hadoop-3.1.3/sbin/stop-dfs.sh"
;;
*)
    echo "Input Args Error..."
;;
esac

# 修改权限
chmod 777 hdp.sh

脚本测试:

启动:

[root@big-data-1 bin]# ./hdp.sh start
 =================== Start  Hadoop Cluster ===================
 --------------- Start hdfs ---------------
Starting namenodes on [big-data-1]
Last login: Sat Aug 21 05:17:52 UTC 2021 from 172.30.0.11 on pts/2
Starting datanodes
localhost: datanode is running as process 530.  Stop it first.
Last login: Sat Aug 21 06:37:11 UTC 2021
Starting secondary namenodes [big-data-3]
Last login: Sat Aug 21 06:37:13 UTC 2021
 --------------- Start yarn ---------------
Starting resourcemanager
Last login: Sat Aug 21 05:17:56 UTC 2021 from 172.30.0.11 on pts/1
Starting nodemanagers
Last login: Sat Aug 21 06:37:20 UTC 2021
 --------------- Start historyserver ---------------

关闭:

[root@big-data-1 /]# ~/bin/hdp.sh stop
 =================== Close Hadoop Cluster ===================
 --------------- Close historyserver ---------------
 --------------- Close yarn ---------------
Stopping nodemanagers
Last login: Sat Aug 21 06:37:22 UTC 2021
Stopping resourcemanager
Last login: Sat Aug 21 06:47:52 UTC 2021
 --------------- Close hdfs ---------------
Stopping namenodes on [big-data-1]
Last login: Sat Aug 21 06:37:16 UTC 2021
Stopping datanodes
Last login: Sat Aug 21 06:47:56 UTC 2021
Stopping secondary namenodes [big-data-3]
Last login: Sat Aug 21 06:47:57 UTC 2021

创建Big-Data镜像

经过上面的安装和配置,我们已经创建了一个三节点的Hadoop集群;

接下来我们将这几个容器提交为镜像:

docker commit --message "大数据集群基本镜像:完成Hadoop和Yarn部分" big-data-1 jasonkay/big-data-1:v1.0
docker commit --message "大数据集群基本镜像:完成Hadoop和Yarn部分" big-data-2 jasonkay/big-data-2:v1.0
docker commit --message "大数据集群基本镜像:完成Hadoop和Yarn部分" big-data-3 jasonkay/big-data-3:v1.0

Hadoop测试

测试之前请确保已经停止并清除了所有正在Run的容器!

通过命令行启动多个容器

启动测试

直接通过命令行启动容器:

docker run -itd --name big-data-1 --net big-data --ip 172.30.0.11  --hostname big-data-1 --privileged  jasonkay/big-data-1:v1.0 /usr/sbin/init
docker run -itd --name big-data-2 --net big-data --ip 172.30.0.12  --hostname big-data-2 --privileged  jasonkay/big-data-2:v1.0 /usr/sbin/init
docker run -itd --name big-data-3 --net big-data --ip 172.30.0.13  --hostname big-data-3 --privileged  jasonkay/big-data-3:v1.0 /usr/sbin/init

进入容器big-data-1

docker exec -it big-data-1 /bin/bash

容器中启动Hadoop:

[root@big-data-1 /]# ~/bin/hdp.sh start

查看结果:

功能测试

数据准备:

cd ~/
vi data.txt

# 写入内容
hello hadoop
hello World
Hello Java
Hey man
i am a programmer

写入HDFS:

# 创建/input目录
hdfs dfs -mkdir /input 
# 写入hdfs
hdfs dfs -put data.txt /input 
# 查看HDFS
hdfs dfs -ls /input
Found 1 items
-rw-r--r--   1 root supergroup         62 2021-08-18 06:42 /input/data.txt

Word Count测试:

cd /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/
hadoop jar hadoop-mapreduce-examples-3.1.3.jar wordcount /input/data.txt /output

查看结果:

hdfs dfs -cat /output/part-r-00000

2021-08-21 07:00:46,337 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
Hello   1
Hey     1
Java    1
World   1
a       1
am      1
hadoop  1
hello   2
i       1
man     1
programmer      1

成功!


通过Docker-Compose启动多个容器

编辑docker-compose.yml

docker-compose.yml

version: '3.4'

services:
  big-data-1:
    image: jasonkay/big-data-1:v1.0
    hostname: big-data-1
    container_name: big-data-1
    privileged: true
    links:
      - big-data-2
      - big-data-3
    depends_on:
      - big-data-2
      - big-data-3
    ports:
      - 9870:9870
      - 22
    entrypoint: ["/usr/sbin/init"]
    networks:
      big-data:
        ipv4_address: 172.30.0.11

  big-data-2:
    image: jasonkay/big-data-2:v1.0
    hostname: big-data-2
    container_name: big-data-2
    privileged: true
    entrypoint: ["/usr/sbin/init"]
    ports:
      - 22
    networks:
      big-data:
        ipv4_address: 172.30.0.12

  big-data-3:
    image: jasonkay/big-data-3:v1.0
    hostname: big-data-3
    container_name: big-data-3
    privileged: true
    entrypoint: ["/usr/sbin/init"]
    ports:
      - 22
    networks:
      big-data:
        ipv4_address: 172.30.0.13

networks:
  big-data:
    external:
      name: big-data

启动三个节点:

[root@localhost docker-repo]# docker-compose  up -d
Creating big-data-3 ... done
Creating big-data-2 ... done
Creating big-data-1 ... done

进入big-data-1启动集群:

[root@big-data-1 bin]# ./hdp.sh start
 =================== Start  Hadoop Cluster ===================
 --------------- Start hdfs ---------------
Starting namenodes on [big-data-1]
Last login: Wed Aug 18 04:48:01 UTC 2021
Starting datanodes
Last login: Sun Aug 22 08:13:26 UTC 2021
Starting secondary namenodes [big-data-3]
Last login: Sun Aug 22 08:13:28 UTC 2021
 --------------- Start yarn ---------------
Starting resourcemanager
Last login: Wed Aug 18 04:47:56 UTC 2021
Starting nodemanagers
Last login: Sun Aug 22 08:13:35 UTC 2021
 --------------- Start historyserver ---------------

查看状态:

[root@big-data-1 ~]# ./xcall.sh jps
--------- big-data-1 ----------
1137 Jps
811 NodeManager
940 JobHistoryServer
492 DataNode
271 NameNode
--------- big-data-2 ----------
694 NodeManager
317 ResourceManager
142 DataNode
1054 Jps
--------- big-data-3 ----------
145 DataNode
229 SecondaryNameNode
518 Jps
316 NodeManager

启动成功!


附录

软件来源:

Github地址:

DockerHub镜像:

系列文章:



本文作者:Jasonkay
本文链接:https://jasonkayzk.github.io/2021/08/21/从零开始搭建大数据镜像-1/
版权声明:本文采用 CC BY-NC-SA 3.0 CN 协议进行许可